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Abstract. This paper compares different methods (Kragten, Guide to the expression of uncertainty 
in measurement –GUM– and Relative Uncertainty) to evaluate the measurement uncertainty in 
bimetallic thermometers. The motivation for the development of the work is based on a need 
detected in the industry to increase the metrological reliability of thermometers for temperature 
control in the most diverse measurement processes. The applied methodology is based on the 
concepts enshrined in the classical literature about the GUM, Kragten and Relative methods. The 
consolidated results confirmed that, for temperature measurement applications, the GUM method 
is more appropriate for estimating the measurement uncertainty. The value obtained was equal to 
1.22oC throughout the calibration range of the instrument. In conclusion, this work showed that an 
increase in metrological reliability for the measurement of temperature, fundamental magnitude in 
industrial processes, can be obtained by evaluating different methods for estimating the 
measurement uncertainty. 
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1. Introduction

The estimation of the uncertainty associated with the measurement is a fundamental
task that produces technical-economic gains for the area of Mechanical Engineering. At an 
industrial level, specifically in temperature measurement, it is strategic to know the 
parameter that best represents the dispersion of a measurand within a certain confident 
level, i.e. measurement uncertainty.  

The specialized literature confirms that the metrological reliability of a measurement 
system is intimately related to the estimated value of its uncertainty (Wang et al., 2018). In 
addition, different studies (Golijanek-Jędrzejczyk et al., 2019; Farrance, Badrick, and 
Frenkel, 2018; Gnauert et al., 2018; Farrance and Frenkel, 2012) show that an improvement 
in the factors that influence the measurement uncertainty tends to increase the availability 
of measuring equipment and, consequently, an increase in the quality of manufactured 
products, according to guidelines specified in ISO 9001:2015 (International Organization 
for Standardization, 2015).  
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 Thus, according to the literature, developing and investigating different methods for 
the estimation of measurement uncertainty is a challenge for engineering and 
measurement science. Typically, the guidelines defined in the GUM (Guide for the 
expression of measurement uncertainty) (JCGM, 2008) are widely applied by several 
Metrology Laboratories in calculating measurement uncertainty. Despite its application, 
this method presents some inconsistency: (i) it combines different probability distributions 
(e.g., normal, rectangular, triangular); (ii) it considers a Gaussian distribution for the 
experimental data of the calibration. 
 In practice, these limitations contribute to a deviation between the physical nature of 
the problem and the mathematical method adopted forits analysis. For the specific case of 
the calibration of instruments for the measurement of temperature at an industrial level, it 
is not very feasible from a technical and economic point of view to calibrate all the points 
along the instrument scale. For example, a bimetallic thermometer with a scale from 0 to 
120 oC that carries out 120 calibration points (assuming that it advances from 1 oC to 1 oC) 
and, additionally, perform 10 repetitions at each point, would generally total 1200 
experimental points. This situation would be ideal to reduce the uncertainty associated 
with the measurement. However, each calibration point has a duration of approximately 2 
hours due to the thermal stability of the standard measurement instrument and the 
medium used for generating heat. In this way, to carry out the entire process, approximately 
2400 hours, which means 100 continuous days of measurement, are required. Clearly, for 
the industrial sector, this scenario is unfeasible from a technical point of view and, logically, 
from an economic point of view. For this reason, in practice, a few calibration points (from 
1 to 3 experimental points) are evaluated according to the NT VVS 103 standard 
(Thermometers, Contact, Direct Reading: Calibration, 1994) for the calibration of thermal 
sensors instruments (RTDs, Thermocouples, and Glass Thermometers). Thus, the 
hypothesis is assumed that the experimental data follow a normal distribution of 
probability. Under this hypothesis, the GUM method is applied to calculate the uncertainty 
associated with the measurement, obtaining results with deviations in terms of the physical 
nature of the problem. To counteract the effects of this situation, the specialized literature 
presents some alternative methods for analyzing measurement uncertainty. Among the 
methods, the ISO GUM Supplement 1, known as the Monte Carlo method (JCGM, 2008), the 
Kragten method, and applications of Bayesian statistics, among others, stand out. The 
literature presents various works where the potential of the GUM, Monte Carlo, and Kragten 
methods have been compared Zarate et al. (2022), Aro et al. (2021), Khan and Ibrayeva 
(2020), Cremona et al. (2018), Sardjono and Wijonarko (2018), Horsky, Irrgeher, and 
Prohaska (2016), Guerrasio et al. (2013), Theodorou, Zannikou, and Zannikos (2012), 
resulting in a  robust Monte Carlo and, additionally, similar results between the GUM and 
Kragten methods. However, in thermal metrology applied to the industrial sector, the 
literature does not show a direct comparison between the GUM and Kragten methods. 
Additionally, due to its ease of application, the relative uncertainty method could be 
adopted without due consideration, obtaining inbetter results. However, they lack 
metrological reliability because the formulation of the method does not represent the 
physical nature of the problem. 
 In this order of ideas, this work seeks to compare three of the most used methods for 
calculating measurement uncertainty: ISO GUM, the Kragten method, and the relative 
uncertainty method. Discuss its advantages, disadvantages, limitations, and considerations 
for its application in the calibration of bimetallic-type temperature measurement 
instruments, which are widely used in the industrial sector. 
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2. Theoretical Fundament 

 To perform an analysis of the experimentally obtained data, this section summarizes 
the main concepts associated with outlier analysis, as well as the methods adopted for the 
analysis and calculation of the uncertainty associated with the measurement, i.e., GUM, 
Kragten's, and relative method. In relation to the application of a polynomial model that 
allows for establishing the adjustment equation in a measurement system, the reference 
(Esraa et al., 2022) shows more details about this procedure. In this order of ideas, this 
work seeks to compare three of the most used methods for calculating measurement 
uncertainty: ISO GUM, the Kragten method, and the relative uncertainty method. Discuss its 
advantages, disadvantages, limitations, and considerations for its application in the 
calibration of bimetallic-type temperature measurement instruments, which are widely 
used in the industrial sector. 

2.1. Analysis of outliers  
Once the experimental data were consolidated, the results analysis methodology was 

applied, starting with the application of the Chauvenet method (Wang, Caja, and Gómez, 
2018) for the elimination of outliers. According to this criterion, a measure must be 
eliminated if: 

|𝒅𝒋| =  |(𝒚𝒋 − �̅�)| > 𝒅𝒄𝒉   (1) 

where |𝑑𝑗| is the distance between an experimental point 𝑦𝑗; and �̅� denotes the mean of the 

sample; 𝑑𝑐ℎ denotes the limit value for elimination by the Chauvenet criterion, defined by 
Equation (2): 

𝒑𝒐 = ∫ 𝑮(𝝓)𝒅𝝓
−𝒅𝒄𝒉

−∞

+ ∫ 𝑮(𝝓)𝒅𝝓
+∞

+𝒅𝒄𝒉

= ∫ 𝑮(𝝓)𝒅𝝓
+𝒅𝒄𝒉

−𝒅𝒄𝒉

=
𝟏

𝟐𝒏
 (2) 

where 𝑝𝑜  is the probability of rejecting a value that is considered as outliers, 𝐺(𝜙) is a 
Gaussian function. In other words, it specifies that an experimental value can be eliminated 
if the probability of obtaining a certain deviation from the mean is less than 1/2n. This 
criterion states that if the value of  𝜂  calculated by Equation (3) is greater than the value of  
𝜂𝑐  tabulated for the Chauvenet criterion, a measured value  𝑥𝑖  must be eliminated (Wang, 
Caja, and Gómez, 2018). 

𝜼 =
|𝒙𝒊 − �̅�|

𝒔 (𝑿)
 (3) 

2.2. Uncertainty Analysis 
2.2.1. Uncertainty Analysis: GUM Method 

Following the GUM methodology described in section 2.1, four sources of uncertainty 
were considered:  
• Instrument resolution (uinst) is associated with rectangular probability distribution, 

according to defined in GUM (JCGM, 2008) for analogical instruments. Thus, the 

resolution of instrument (2 oC) is divided by 2√3. 
• Reference instrument (up) is associated with the calibration of the reference 

instrument. This value is consigned in the Certificate of Calibration. The expanded 
uncertainty equals 0.095 oC, and the de coverage factor is k = 2. Thus, the standard 
uncertainty is 0.0475 oC.  

• Repeatability (ur) is associated with different measurements realized in the 
experiments. In order to calculate this source of uncertainty, Equation (4) was applied 
from the experimental data.   
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• Polynomial adjustment (us) is associated with less uncertainty of polynomial. The 
results confirmed that this value equals 0.1522 oC for a polynomial of degree two.   
Equation (4) was used to calculate the combined uncertainty (uc) from the contributing 

sources of uncertainty: 

𝒖𝒄
𝟐 = 𝒖𝒊𝒏𝒔𝒕

𝟐 + 𝒖𝒑
𝟐 + 𝒖𝒓

𝟐 + 𝒖𝒔
𝟐 (4) 

The coverage factor, determined from a t-student distribution, corresponds to k = 2 for 
all the experimental points. Thus, the expanded uncertainty (UE) associated with the 
temperature measurement for a confidence level (α) of 95.45% was determined by 
applying Equation (5). Table 6 summarizes the results of uncertainty analysis.  

𝑼𝑬 = 𝒖𝒄 ∙ 𝒌 (5) 

2.2.2. Uncertainty Analysis: Kragten's Method 
From the sources of uncertainties determined by the GUM method, Kragten's method 

is applied. Equation (6) denotes the measurand used to determine the corrected systematic 
error (𝐸𝑐). 

𝑬𝒄 = 𝑻𝒊 − 𝑻𝒂 (6) 

The uncertainties associated with the temperature indicated by the instrument (𝑇𝑖) and 
that associated with the temperature adjusted by the interpolating polynomial (𝑇𝑎 ) are 
determined by Equations (7) and (8). 

𝑬𝒄(𝑻𝒊) = (𝑻𝒊 + 𝒖𝑬𝑻𝒊) − 𝑻𝒂 (7) 

𝑬𝒄(𝑻𝒂) = 𝑻𝒊 − (𝑻𝒂 + 𝒖𝑬𝑻𝒂) (8) 

Equations (9) and (10) were used to calculate the deviations associated with the 
temperature indicated by the instrument ( 𝑢𝐸𝑇𝑖 ) and adjusted by the interpolating 
polynomial (𝑢𝐸𝑇𝑎). 

𝒖𝑬𝑻𝒊
𝟐 = 𝒖𝒊𝒏𝒔𝒕

𝟐 + 𝒖𝒓
𝟐 (9) 

𝒖𝑬𝑻𝒂
𝟐 = 𝒖𝒔

𝟐 + 𝒖𝒑
𝟐 (10) 

In the sequence, Equations (11) and (12) were applied to estimate the uncertainties 
associated with the temperature indicated by the instrument (𝑢𝑇𝑖) and adjusted by the 
interpolating polynomial (𝑢𝑇𝑎). 

𝒖𝑻𝒊 = |𝑬𝒄(𝑻𝒊) − 𝑬𝒄 |  (11) 

𝒖𝑻𝒂 = |𝑬𝒄(𝑻𝒂) − 𝑬𝒄 | (12) 

Finally, the combined uncertainty is calculated by applying Equation (13), and the 
expanded uncertainty (k = 2) was determined by applying Equation (14). 

𝒖𝒄 = √(𝒖𝑻𝒊)
𝟐 + (𝒖𝑻𝒂)𝟐    (13) 

𝑼𝑬 = 𝒖𝒄 ∙ 𝒌 (14) 

2.2.3. Uncertainty Analysis: Uncertainty Relative Method 
In relation to the relative uncertainty method, Equation (6) shows the expression that 

represents the measurand. Equations (15) and (16) estimate the measurement uncertainty. 

(
𝒖𝒄

𝑬𝒄
)

𝟐

= (
 𝒖𝑻𝒊

𝑻𝒊
)

𝟐

+ (
 𝒖𝑻𝒂

𝑻𝒂
)

𝟐

   
(15) 

𝒖𝒄 = √(𝑬𝒄)𝟐 ∙ [(
 𝒖𝑻𝒊

𝑻𝒊
)

𝟐

+ (
 𝒖𝑻𝒂

𝑻𝒂
)

𝟐

]   

(16) 
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3. Experimental Methodology 

 The experimental methodology is described in this section. In the course of the 
experiments performed in a metrology laboratory, under controlled environmental 
conditions, a bimetallic thermometer was calibrated (Manufacturer: Rockage; Model: SHB-
05; Range: -20 oC to 120 oC; Resolution: 1 oC) using the method of direct comparison. This 
calibration was performed using a standard dry block as a means for generating heat 
(Manufacturer: Reed BX-150, Temperature measurement range: 27.0 oC to 350.0 oC) and a 
thermocouple with a digital temperature indicator (Manufacturer: Xintest, Model: HT-9815 
Thermocouple Thermometers, ID: EPS-001, Serial Number: 201703021366, Range: 0.0 oC 
to 99.9 oC). Subsequent sections detail the technical characteristics of the experimental 
apparatus and a description of the procedure for collecting experimental data in the 
laboratory. 
 The Rockage bimetallic thermometer calibration experiments were performed in a 
Metrology Laboratory prepared for that purpose, following the guidelines established in 
the normative document NT-VVS-103:1994, Thermometers contact direct Reading: 
Calibration. It is important to note that a conventional Metrology Laboratory, when 
performing this type of calibration, generally takes of 3 experimental points along the range 
of the instrument. In addition, it does not perform repetitions at each point. As an added 
value to the research and considering the relevance of the measurement of temperature in 
equipment and measurement processes in the industry, in this work, we chose to be more 
rigorous with obtaining the experimental data and its subsequent statistical treatment. In 
relation to the calibrated experimental points, 8 of these were taken throughout the range 
of indicators of the instrument, varying from 30 oC to 100 oC. In addition, for each 
calibration point 6 repetitions were taken for the instrument (bimetal thermometer) and 6 
for the measurement pattern, totaling 12 experimental points in each measurement. 
Throughout the experiment, 96 points were evaluated in 12 continuous hours of 
measurement.  
 Finally, the experimental data allowed to evaluate the metrological reliability of the 
bimetallic thermometer, consolidated in Table 1. This table highlights in red some values 
considered as possible outliers.  

Table 1 Experimental data of the calibration in the laboratory 

Reference temperature in the 
Dry Block 

Instrument 
(I) /  

Reference 
(R)  

Temperature Measurements 
Average 

Standard 
Desviation #1 #2 #3 #4 #5 #6 

°C °C °C °C °C °C °C °C °C 

30 
I  30 29 30 30 31 30 30 0.6325 
R 30.6 30.4 30.4 30.3 30.2 30.2 30.4 0.1517 

40 
I  39 40 40 39 39 41 40 0.8165 
R 39.1 39.3 39.3 39.2 39.2 39.3 39.2 0.0816 

50 
I  50 50 50 50 49 50 50 0.4082 
R 49.5 49.5 49.5 49.5 49.4 49.5 49.5 0.0408 

60 
I  61 61 61 60 60 61 61 0.5164 
R 60.2 60.2 60.2 60.4 60.3 60.2 60.3 0.0837 

70 
I  70 70 70 69 69 70 70 0.5164 
R 69.5 69.6 69.6 69.6 69.6 69.5 69.6 0.0516 

80 
I  80 79 79 79 80 80 80 0.5477 
R 79.7 79.7 79.7 79.9 79.9 79.9 79.8 0.1095 

90 
I  89 90 90 90 89 90 90 0.5164 
R 88.6 88.6 88.6 88.6 88.5 88.5 88.6 0.0516 

100 
I  100 99 99 99 100 100 100 0.5477 
R 99.7 99.6 99.6 99.7 99.7 99.6 99.7 0.0548 
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 This hypothesis is based on the observation of the experimental data collected for each 
experimental point, since they are more dispersed when compared to the other 5 data 
collected. However, this hypothesis must be confirmed by applying the Chauvenet method, 
as evidenced in the results section. 
 
4. Results and Discussion 

This section consolidates the main results of the investigation. It was divided into three 
large blocks to facilitate its development: (i) Analysis of outliers. In this stage, the parametric 
technique proposed by Chauvenet will be applied to eliminate aberrant values, i.e., outliers. 
The reason why these values are produced is very varied. Consequently, the uncertainty 
associated with the temperature measurement increases and unquestionably, the impact 
of a given measurement process will be negative both technically and economically. Hence, 
the importance of carrying out this important stage within the proposed methodology; (ii) 
Estimation of the adjustment polynomial. By applying the ordinary least squares method, it 
is expected to estimate a polynomial that best represents the physics of the problem 
studied. This polynomial is associated with the least adjustment uncertainty, also known as 
the quadratic mean deviation. In addition to allowing the obtaining of adjusted temperature 
values, the polynomial allows obtaining errors and uncertainties for any indication in the 
calibration range, even in those points where it was not possible to perform the 
experimental calibration; (iii) Application of techniques to estimate uncertainty. In this stage, 
the enshrined theory was studied in detail for three uncertainty estimation techniques: 
GUM, Kragten, and Relative Uncertainty. Subsequently, the experimental data analysis was 
performed to establish the expanded uncertainty associated with the temperature 
measurement, as well as the associated to systematic errors. 

4.1. Analysis of Outliers  
It is emphasized that the value of 𝜂𝑐  is a function of the number of measurements taken. 

By applying Equation (3) and using the data in Table 1 it was possible to obtain the value 
of 𝜂  (calculated) for each experimental point. In addition, the value of 𝜂𝑐  (critical) was 
obtained by applying Equation (2). Table 2 summarizes the calculation for 𝜂 and shows the 
value of 𝜂𝑐 .  

Table 2 Calculation of η parameter and the 𝜂𝑐  value 

Instrument (I) /  
Reference (R)  

Calculation of ɳ from the Temperature Measurements Critical 
value of ɳc 

ɳ 1 ɳ 2 ɳ 3 ɳ 4 ɳ 5 ɳ 6 

I  0.0 1.6 0.0 0.0 1.6 0.0 

1.73 

R 1.6 0.3 0.3 0.3 1.0 1.0 
I  0.8 0.4 0.4 0.8 0.8 1.6 
R 1.6 0.8 0.8 0.4 0.4 0.8 
I  0.4 0.4 0.4 0.4 2.0 0.4 
R 0.4 0.4 0.4 0.4 2.0 0.4 
I  0.6 0.6 0.6 1.3 1.3 0.6 
R 0.6 0.6 0.6 1.8 0.6 0.6 
I  0.6 0.6 0.6 1.3 1.3 0.6 
R 1.3 0.6 0.6 0.6 0.6 1.3 
I  0.9 0.9 0.9 0.9 0.9 0.9 
R 0.9 0.9 0.9 0.9 0.9 0.9 
I  1.3 0.6 0.6 0.6 1.3 0.6 
R 0.6 0.6 0.6 0.6 1.3 1.3 
I  0.9 0.9 0.9 0.9 0.9 0.9 
R 0.9 0.9 0.9 0.9 0.9 0.9 
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Table 2 highlights in red the 𝜂 c values calculated for the three temperature points 
suspected of being outlier values identified in Table 1. The results of the table above 
confirmed that three measurements of temperature must be eliminated because the eta 
parameter calculated is major than the critical value.  

These values ( 𝜂 ) were highlighted in red color (Table 2), and the correspondent 
temperature values were highlighted in red color (Table 1). These values correspond to 
measures 5 of the instrument (49 oC) and reference instrument (49.4 oC), whose reference 
value of the dry block is 50 oC, as well as measure 4 of the reference instrument (60.4 oC) 
whose value of the dry block reference is 60 oC. Once the mean and the standard deviation 
were recalculated for those temperature values where the outliers were eliminated, it was 
found that the standard deviation decreased when compared with the standard deviation 
of the original data.  

4.2. Estimation of the Adjustment Polynomial  
In the sequence of the analysis and using the experimental data, without considering 

the outliers, it was possible to establish a mean value that represents the total of the 
measurements obtained for each experimental point. Thus, Table 3 consolidates the 
average values for the bimetallic thermometer (instrument) and the reference instrument. 
Likewise, the value of the systematic error is shown. This value is obtained by the difference 
between the temperature indicated by the instrument and the temperature of the reference 
instrument, as established by the International Vocabulary of Metrology (VIM) (JCGM, 
2012). According to the International Vocabulary of Metrology (VIM) (JCGM, 2012), the 
value that represents the discrepancy between the temperature measured by an 
instrument and the temperature measured by a reference instrument is defined as the 
difference between the two readings. 

Table 3 Average temperature and calculation of systematic error 

Average temperature of 
the instrument  

(Ti) 

Average temperature of the 
reference instrument  

(Tp) 

Systematic 
error  

(E) 

°C °C °C 

30 30.4 -0.4 

40 39.2 0.8 

50 49.5 0.5 

61 60.2 0.8 

70 69.6 0.4 

80 79.8 0.2 

90 88.6 1.4 

100 99.7 0.3 

Using the values of Ti and Tp, it was possible to determine the interpolating polynomial 
that best represents the physical nature of the experiment by applying the ordinary least 
squares method. The objective is to identify the best polynomial and the uncertainty of 
adjustment associated with each polynomial (us) must be determined. The polynomial with 
the smallest (us) is considered to be the best representation of the experimental physical 
model. Regarding the number of degrees of freedom, this parameter is calculated by the 
difference between the number of possibilities (number of experimental points n) and the 
number of restrictions imposed (in the case of using fit polynomials, the number of 
restrictions is given by a number of coefficients of the polynomial). Table 4 consolidates the 
results obtained for the adjusted temperature, applying each polynomial, and the table 5 
shows the final value for the adjustment uncertainty associated with each polynomial. 



Hernández-Vásquez et al. 381 

 

Table 4 Adjusted Temperature (Ta) for each polynomial 

Polynomial of Degree 1 Polynomial of Degree 2 Polynomial of Degree 3 

°C °C °C 

29.8 30.1 30.2 

39.7 39.8 39.8 

49.6 49.5 49.7 

60.5 60.4 60.9 

69.5 69.3 70.2 

79.4 79.3 80.8 

89.3 89.4 91.4 

99.2 99.6 102.1 

Table 5 Calculation of the uncertainty associated with the polynomial adjustment (us) 

Polynomial of Degree 1 Polynomial of Degree 2 Polynomial of Degree 3 

°C °C °C 

0.1568 0.1522 0.2826 

The result above shows as the lower value of uncertainty is 0.1522 oC and corresponds 
to the polynomial of degree two. Thus, this result confirmed that, contrary to the expected, 
a polynomial of degree two models the physical nature of the problem with an uncertainty 
less than that associated with a polynomial of the first degree. Thus, in this procedure, it 
was evident that the best interpolating polynomial of adjustment corresponds to a second-
degree polynomial under the following equation:  

𝑻𝒂 = 𝟎. 𝟎𝟎𝟎𝟒(𝑻𝒊)
𝟐 + 𝟎. 𝟗𝟒𝟏𝟒(𝑻𝒊) + 𝟏. 𝟒𝟓𝟖𝟖  (17) 

In this expression 𝑇𝑎: denotes the temperature set by the interpolating polynomial and 𝑇𝑖: 
denotes the temperature indicated by the instrument.  

Therefore, it is good calibration practice to test at least three degrees of a polynomial to 
define the one that offers the lowest adjustment uncertainty and, therefore, the lowest 
uncertainty associated with the measurement. The evaluation of a polynomial of the fourth 
degree or higher, although it offers a better result from a mathematical point of view (i.e.: 
smaller fit errors), does not, however, represent the physical nature of the phenomenon 
studied. 

The application of a second-degree interpolating polynomial allows for correcting the 
experimental results measured by the measuring instrument, thus eliminating the 
systematic error inherent to the measurement process, and facilitating the process of 
incorporating calibration in the remote data processing. 

4.3. Application of Techniques to Estimate Uncertainty  
Once the uncertainty of the adjustment is determined, we estimate the expanded 

uncertainty associated with the measurement by the three methods under study: GUM, 
Kragten, and Relative Uncertainty. 

4.3.1. Uncertainty Analysis: GUM Method 
In the table above it is possible to identify that the greatest source of uncertainty is 

associated with the resolution of the measurement instrument, while repeatability is the 
source of the lowest contribution.  
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Table 6 Uncertainty analysis: GUM method 

Uncertainty 
associated to 
instrument 
resolution 

(uinst) 

Uncertainty 
associated to 

reference 
instrument 

(up) 

Uncertainty 
associated to 
repeatability 

(ur) 

Uncertainty 
associated to 
Polynomial 
Adjustment 

(us) 

Combined 
Uncertainty 

(uc) 

Coverage 
Factor 

(k) 

Expanded 
Uncertainty 

(UE) 

Confidence 
Level 

(α) 

°C °C °C °C °C - °C % 

0.5774 0.0475 0.0619 0.1522 0.6022 2.0 1.22 

95.45% 

0.5774 0.0475 0.0333 0.1522 0.5999 2.0 1.22 
0.5774 0.0475 0.0000 0.1522 0.5990 2.0 1.21 
0.5774 0.0475 0.0183 0.1522 0.5992 2.0 1.22 
0.5774 0.0475 0.0211 0.1522 0.5993 2.0 1.22 
0.5774 0.0475 0.0447 0.1522 0.6006 2.0 1.22 
0.5774 0.0475 0.0211 0.1522 0.5993 2.0 1.22 
0.5774 0.0475 0.0224 0.1522 0.5994 2.0 1.22 

Table 7 consolidates the final results of the method. It shows the temperature set by 
the polynomial, as well as the corrected systematic error module. This parameter was 
determined by calculating the difference between the temperature indicated by the 
instrument and the temperature set by the interpolating polynomial. In addition, the 
expanded uncertainty associated with the temperature measurement is shown, and finally, 
the calculation of the total error of the measurement: Total Error =|Systematic 
error|+|Expanded uncertainty| ≤ (Process tolerance). 

Table 7 Uncertainty analysis: GUM method 

Adjusted 

Temperature 

(Ta) 

Correction of Systematic 

Error Module 

(|Ec|) 

Expanded 

Uncertainty  

(UE) 

Error Total 

(ET =|Ec|+ |UE|) 

°C °C °C °C 

30.0 0.1 1.22 1.3 

40.0 0.2 1.22 1.5 

50.0 0.5 1.21 1.7 

61.0 0.6 1.22 1.8 

70.0 0.7 1.22 1.9 

80.0 0.7 1.22 1.9 

90.0 0.6 1.22 1.8 

100.0 0.4 1.22 1.6 

From the Table 7 it is observed that the expanded uncertainty associated with the 
temperature measurement applying the GUM method is equal to 1.22 oC in all the 
calibration points except for point 50 oC, where an expanded uncertainty equal to 1.21 was 
estimated.  

4.3.2. Uncertainty analysis: Kragten's method 
Table 8 consolidates the results of the uncertainty analysis by Kragten's method. It can 

be observed in this table that, unlike the GUM method, the uncertainty is not constant 
throughout the instrument's measurement range, but varies from 1.21 oC to 1.39 oC. 
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Table 8 Consolidated results: Kragten's method 

(Ec) [Ec (Ti )] [Ec (Ta )] (uTi) (uTa)  (uc)  (k)  (UE)  (α) 

°C °C °C °C °C °C - °C % 

-0.1 0.6 -0.2 0.6 0.2 0.6523 2.0 1.32 

95.45% 

0.2 0.9 0.1 0.7 0.2 0.6855 2.0 1.39 

0.5 1.0 0.3 0.6 0.2 0.5990 2.0 1.21 

0.6 1.2 0.5 0.6 0.2 0.6350 2.0 1.29 

0.7 1.3 0.5 0.6 0.2 0.6350 2.0 1.29 

0.7 1.3 0.5 0.6 0.2 0.6393 2.0 1.30 

0.6 1.2 0.4 0.6 0.2 0.6350 2.0 1.29 

0.4 1.0 0.2 0.6 0.2 0.6393 2.0 1.30 

(Ec): Correction of Systematic Error; [Ec (Ti )]: Correction of Systematic Error associated to Indicated 
temperature; [Ec (Ta )]: Correction of Systematic Error associated to Adjusted temperature; (uTi): Uncertainty 
associated to Indicated temperature; (uTa): Uncertainty associated to Adjusted temperature; (uc): Combined 
uncertainty; (k): Coverage factor; (UE): Expanded Uncertainty; (α): Confident level. 

4.3.3. Uncertainty Analysis: Uncertainty Relative Method 

Table 9 consolidates the results of the uncertainty analysis by the Relative Uncertainty 
method. It can be observed that, unlike the GUM and Kragten's method, the uncertainty is 
much lower when compared to that obtained by the previous methods. This uncertainty 
varies from 0.0025 oC to 0.012 oC. 

Table 9 Consolidated results: Uncertainty relative method 

(Ec) (Ti ) (Ta ) (uTi) (uTa)  (uc) (k)  (UE)  (α) 

°C °C °C °C °C °C - °C % 

-0.1 30.0 30.1 0.6 0.2 0.0012 2.0 0.0025 

95.45% 

0.2 40.0 39.8 0.6 0.2 0.0037 2.0 0.0074 

0.5 50.0 49.5 0.6 0.2 0.0056 2.0 0.011 

0.6 61.0 60.4 0.6 0.2 0.0061 2.0 0.012 

0.7 70.0 69.3 0.6 0.2 0.0058 2.0 0.012 

0.7 80.0 79.3 0.6 0.2 0.0050 2.0 0.010 

0.6 90.0 89.4 0.6 0.2 0.0038 2.0 0.0077 

0.4 100.0 99.6 0.6 0.2 0.0024 2.0 0.0049 

(Ec): Correction of Systematic Error; (Ti ): Indicated temperature by the instrument;  (Ta ): Adjusted 
temperature by polynomial; (uTi): Uncertainty associated to Indicated temperature; (uTa): Uncertainty 
associated to Adjusted temperature; (uc): Combined uncertainty; (k): Coverage factor; (UE): Expanded 
Uncertainty; (α): Confident level. 

4.4. Metrological Comparison of the GUM, Kragten, and Relative Method 
This section consolidates the uncertainty analysis results by the three evaluation 

methods: GUM, Kragten, and Relative. Figure 1 illustrates the different uncertainty values 
found by GUM and Kragten methods. The results confirmed that there is a considerable 
difference in estimating the measurement uncertainty according to the method that is 
applied. In addition, by the method of Relative Uncertainty, it was amazing to find a much 
lower value than in the other two cases. This is because the relative uncertainty method 
requires a linear independence between the variables without considering the measurand's 
mathematical model. Thus, it is confirmed that this method is unsuitable when the 
measurand corresponds to addition or subtraction parameters since it does not represent 
the physical nature of the problem.  
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In relation to the results obtained by the Kragten method and the GUM method, the 
consolidated results showed that the calculation of uncertainty by the Kragten method is 
superior to the results obtained by the GUM method. These results can be explained 
through the sources of uncertainty for each situation. Equation (13) showed that for the 
Kragten method, there are two main components and, as shown in Table 8, both 
predominate with a significant contribution: (uTi): Uncertainty associated to Indicated 
temperature; (uTa): Uncertainty associated with Adjusted temperature. On the contrary, for 
the GUM method, Equation (4) shows that despite having four contributing components of 
uncertainty (i.e., Instrument resolution (uinst), Reference instrument (up), Repeatability (ur), 
and Polynomial adjustment (us)), the consolidated results in Table 6 confirm that two of 
these components do not contribute significantly to the calculation of uncertainty. Those 
sources correspond to Reference instrument (up) and Repeatability (ur). In this way, only 
two sources contribute directly to calculating uncertainty by the GUM method. When 
comparing the order of magnitude of the contributing sources of uncertainty by the GUM 
method (us and uinst) the values are lower than the contributions to the Kragten method (uTa 

and uTi). Thus, the GUM method offers a lower value than the calculation of uncertainty due 
to its mathematical conception from the conceptual formulation of the method. 

 

Figure 1 Uncertainty of Measurement by methods: GUM and Kragten  
 
5. Conclusions 

In the industry, the importance of finding increasingly more minor uncertainties for the 
control of their measurement processes, specifically in the use of bimetallic thermometers 
for temperature control, is an activity that directly impacts the industry's economy. The 
consolidated results in this work allowed us to compare, from the metrological rigor, three 
methods for the evaluation of measurement uncertainty. The Relative Uncertainty method 
showed the lowest measurement uncertainty. However, it is not able to faithfully represent 
the physical nature of the problem. The explanation of this behavior that associates that the 
combination of relative uncertainties does not consider the mathematical calculation model 
of the measurand and should only be applied when it is defined by the multiplication and 
division of linear and independent terms. On the other hand, although Kragten's method is 
used to estimate uncertainty due to its mathematical robustness, it offers greater 
uncertainties when compared to the GUM method. Thus, the GUM method was more 
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appropriate for estimating the measurement uncertainty associated with the temperature 
magnitude. Furthermore, it is noteworthy that the ordinary least squares method proved 
to be a suitable approach for: (i) deriving a second degree interpolating polynomial, which 
exhibits reduced uncertainty in comparison to the first-order polynomial typically utilized 
in industrial settings, and (ii) determining the temperature adjustment for any instrument 
reading within the calibration range. The methods applied in the investigation are valid for 
the physical principle of measurement associated with the thermal expansion between two 
metals. However, depending on the robustness of the methods developed, this study can be 
replicated for the evaluation of instruments that control other variables physical in the 
industry: pressure, dimensional and electrical measurements, among others.  
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